DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY LUCKNOW

Evaluation Scheme & Syllabus

For

B.Tech. Fourth Year

(Computer Science and Engineering/Computer Science)

On

Choice Based Credit System

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY LUCKNOW

B.Tech. (Computer Science and Engineering)
VII SEMESTER

SI. No.	Subject Code	Subject Name	L-T-P	Th/Lab Marks	Sessional		Total	Credit
110.				ESE	СТ	ТА		
1	Open Elective-1	Open Elective Course -1	300	70	20	10	100	3
2	CS Elective-3	Deptt Elective Course-3	300	70	20	10	100	3
3	CS Elective-4	Deptt Elective Course-4	310	70	20	10	100	4
4	RCS701	Distributed System	310	70	20	10	100	4
5	RCS702	Artificial Intelligence	300	70	20	10	100	3
6	RCS751	Distributed System Lab	002	50		50	100	1
7	RCS752	Artificial Intelligence Lab	002	50		50	100	1
8	RCS753	Industrial Training	003			100	100	2
9	RCS754	Project	006			200	200	3
	TOTAL			450	100	450	1000	24

B.Tech. (Computer Science and Engineering) VIII SEMESTER

SI.	Subject Code	Subject Name	L-T-P Th/Lab ESE		Sessional		Total	Credit
No.	Subject Coue	Subject Maine		ESE	СТ	ТА		creat
1	Open Elective-2	Open Elective Course-2	300	70	20	10	100	3
2	CS Elective-5	Deptt Elective Course-5	310	70	20	10	100	4
3	CS Elective-6	Deptt Elective Course-6	300	70	20	10	100	3
4	RCS851	Seminar	003			100	100	2
5	RCS852	Project	0012	350		250	600	12
	TOTAL			560	60	380	1000	24

DEPARTMENTAL ELECTIVES

CS-ELECTIVE -3:

- 1. RCS070 Embedded Systems
- 2. RCS071 Application of Soft Computing
- 3. RCS072 High Performance Computing
- 4. RCS073 Human Computer Interface

CS-ELECTIVE-4:

- 1. RCS075 Cloud Computing
- 2. RCS076 Blockchain Architecture Design
- 3. RCS077 Agile Software Development
- 4. RCS078 Augmented & Virtual Reality

CS-ELECTIVE-5:

1. RCS080 Machine Learning (Mapping with MOOCS: <u>https://onlinecourses.nptel.ac.in/noc17_cs17/preview</u>

https://onlinecourses.nptel.ac.in/noc17_cs26/preview)

- 2. RCS081 Game Programming
- 3. RCS082 Image Processing (Mapping with MOOCS: <u>https://onlinecourses.nptel.ac.in/noc18_ee40/preview</u> https://nptel.ac.in/courses/106105032/
- 4. RCS083 Parallel and Distributed Computing (Mapping with MOOCS: <u>https://nptel.ac.in/courses/106102114/</u>, <u>https://nptel.ac.in/courses/106104024/</u>)

CS-ELECTIVE-6:

- 1. RCS085 Speech Natural language processing (Mapping with MOOCS: https://nptel.ac.in/courses/106101007/

 https://nptel.ac.in/courses/106105158/)
- 2. RCS086 Deep Learning (Mapping with MOOCS: <u>https://onlinecourses.nptel.ac.in/noc18_cs41/preview</u>)
- 3. RCS087 Data Compression
- 4. RCS088 Quantum Computing (Mapping with MOOCS: <u>https://onlinecourses.nptel.ac.in/noc18_cy07</u>)

B.TECH. (COMPUTER SCIENCE AND ENGINEERING)

VII & VIII SEMESTER (DETAILED SYLLABUS)

	DISTRIBUTED SYSTEM	
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Characterization of Distributed Systems : Introduction, Examples of distributed Systems, Resource sharing and the Web Challenges. Architectural models, Fundamental Models. Theoretical Foundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks ,Lamport's & vectors logical clocks. Concepts in Message Passing Systems: causal order, total order, total causal order, Techniques for Message Ordering, Causal ordering of messages, global state, termination detection.	08
II	Distributed Mutual Exclusion: Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and non token based algorithms, performance metric for distributed mutual exclusion algorithms. Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.	08
III	Agreement Protocols: Introduction, System models, classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem, Atomic Commit in Distributed Database system. Distributed Resource Management: Issues in distributed File Systems, Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory.	08
IV	Failure Recovery in Distributed Systems: Concepts in Backward and Forward recovery, Recovery in Concurrent systems, Obtaining consistent Checkpoints, Recovery in Distributed Database Systems. Fault Tolerance: Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols	08
V	Transactions and Concurrency Control : Transactions, Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control. Distributed Transactions: Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication: System model and group communication, Fault - tolerant services, highly available services, Transactions with replicated data.	08
Fext bo	oks:	
1. Singh	al&Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill	
2. Rama	krishna, Gehrke," Database Management Systems", McGraw Hill	
3. Vijay	K.Garg Elements of Distributed Compuitng, Wiley	
4. Coulc	ouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Education 5. Tenanua	nbaum,
Steen,"	Distributed Systems", PHI	

	ARTIFICIAL INTELLIGENCE	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Introduction: Introduction to Artificial Intelligence, Foundations and History of Artificial Intelligence, Applications of Artificial Intelligence, Intelligent Agents, Structure of Intelligent Agents. Computer vision, Natural Language Possessing.	08
П	Introduction to Search : Searching for solutions, Uniformed search strategies, Informed search strategies, Local search algorithms and optimistic problems, Adversarial Search, Search for games, Alpha - Beta pruning	08
III	Knowledge Representation & Reasoning: Propositional logic, Theory of first order logic, Inference in First order logic, Forward & Backward chaining, Resolution, Probabilistic reasoning, Utility theory, Hidden Markov Models (HMM), Bayesian Networks.	08
IV	Machine Learning : Supervised and unsupervised learning, Decision trees, Statistical learning models, Learning with complete data - Naive Bayes models, Learning with hidden data - EM algorithm, Reinforcement learning,	08
V	Pattern Recognition : Introduction, Design principles of pattern recognition system, Statistical Pattern recognition, Parameter estimation methods - Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA), Classification Techniques – Nearest Neighbor (NN) Rule, Bayes Classifier, Support Vector Machine (SVM), K – means clustering.	08
	t Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", Pearson Education	
3. E Ch	e Rich and Kevin Knight, "Artificial Intelligence", McGraw-Hill arniak and D McDermott, "Introduction to Artificial Intelligence", Pearson Education W. Patterson, "Artificial Intelligence and Expert Systems", Prentice Hall of India,	

DISTRIBUTED SYSTEM LAB

The following programs may be developed preferably on 'UNIX' platform:-

- 1. Simulate the functioning of Lamport's Logical Clock in 'C'.
- 2. Simulate the Distributed Mutual Exclusion in 'C'.
- 3. Implement a Distributed Chat Server using TCP Sockets in 'C'.
- 4. Implement RPC mechanism for a file transfer across a network in 'C'
- 5. Implement 'Java RMI' mechanism for accessing methods of remote systems.
- 6. Simulate Balanced Sliding Window Protocol in 'C'.
- 7. Implement CORBA mechanism by using 'C++' program at one end and 'Java program on the other.

Artificial Intelligence Lab

The following programs may be developed -

1.Study of Prolog.

- 2 Write simple fact for the statements using PROLOG.
- 3 Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 4 Write a program to solve the Monkey Banana problem.
- 5 WAP in turbo prolog for medical diagnosis and show the advantage and disadvantage of green and red cuts.
- 6 WAP to implement factorial, fibonacci of a given number.
- 7 Write a program to solve 4-Queen problem.
- 8 Write a program to solve traveling salesman problem.
- 9 Write a program to solve water jug problem using LISP

	EMBEDDED SYSTEMS	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
		Lecture
Ι	Introduction to Embedded Systems - The build process for embedded systems- Structural units in Embedded processor , selection of processor & memory devices- DMA - Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.	08
II	Embedded Networking : Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols – RS232 standard – RS422 – RS485 – CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) –need for device drivers.	08
ш	Embedded Firmware Development Environment : Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.	08
IV	RTOS Based Embedded System Design: Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non preemptive scheduling, Task communication shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, 4C/OS-II, RT Linux.	08
V	Embedded System Application Development: Design issues and techniques Case Study of Washing Machine- Automotive Application- Smart card System Application.	08
Text be	ooks:	
1. 2. 3. 4. 5.	 Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design", Elsevier, 2006. Michael J. Pont, "Embedded C", Pearson Education , 2007. Steve Heath, "Embedded System Design", Elsevier, 2005. Muhammed Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson Education, Second edition, 2007. 	

	APPLICATION OF SOFT COMPUTING	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Neural Networks-I (Introduction & Architecture) : Neuron, Nerve structure and synapse, Artificial Neuron and its model, activation functions, Neural network architecture: single layer and multilayer feed forward networks, recurrent networks. Various learning techniques; perception and convergence rule, Auto-associative and hetro-associative memory.	08
II	Neural Networks-II (Back propogation networks): Architecture: perceptron model, solution, single layer artificial neural network, multilayer perception model; back propogation learning methods, effect of learning rule co-efficient ;back propagation algorithm, factors affecting backpropagation training, applications.	08
III	Fuzzy Logic-I (Introduction): Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion.	08
IV	Fuzzy Logic –II (Fuzzy Membership, Rules) : Membership functions, interference in fuzzy logic, fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzyfications & Defuzzificataions, Fuzzy Controller, Industrial applications	08
V	Genetic Algorithm(GA): Basic concepts, working principle, procedures of GA, flow chart of GA, Genetic representations, (encoding) Initialization and selection, Genetic operators, Mutation, Generational Cycle, applications.	08
Fext bo	ooks:	
	ajsekaran & G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Sy tions" Prentice Hall of India.	nthesis and
2. N.P.	Padhy,"Artificial Intelligence and Intelligent Systems" Oxford University Press. Reference Books:	
3. Sima	an Haykin,"Neural Netowrks"Prentice Hall of India	
4. Time	othy J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India.	

5. Kumar Satish, "Neural Networks" Tata Mc Graw Hill

	HIGH PERFORMANCE COMPUTING	2.0.0
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Overview of Grid Computing Technology, History of Grid Computing, High Performance Computing, Cluster Computing. Peer-to-Peer Computing, Internet Computing, Grid Computing Model and Protocols, Types of Grids: Desktop Grids, Cluster Grids, Data Grids, High- Performance Grids, Applications and Architectures of High Performance Grids, High Performance Application Development Environment.	08
II	Open Grid Services Architecture, Introduction, Requirements, Capabilities, Security Considerations, GLOBUS Toolkit.	08
Ш	Overview of Cluster Computing, Cluster Computer and its Architecture, Clusters Classifications, Components for Clusters, Cluster Middleware and SSI, Resource Management and Scheduling, Programming, Environments and Tools, Cluster Applications, Cluster Systems,	08
IV	Beowulf Cluster: The Beowulf Model, Application Domains, Beowulf System Architecture, Software Practices, Parallel Programming with MPL, Parallel Virtual Machine (PVM).	08
V	Overview of Cloud Computing, Types of Cloud, Cyber infrastructure, Service Oriented Architecture Cloud Computing Components: Infrastructure, Storage, Platform, Application, Services, Clients, Cloud Computing Architecture.	08
Fext bo	poks:	I
1. Laure	ence T.Yang, Minyi Guo – High Performance Computing Paradigm and Infrastructure John Wiley	
2. Ahm	ar Abbas, "Grid Computing: Practical Guide to Technology & Applications", Firewall Media, 2004.	
3. Josh	y Joseph and Craig Fellenstein, "Grid Computing" Pearson Education, 2004.	
4. lan F	oster, et al., "The Open Grid Services Architecture", Version 1.5 (GFD.80). Open Grid Forum, 2006.	
6. Rajk	umarBuyya. High Performance Cluster Computing: Architectures and Systems. PrenticeHall India, 199	99.

	HUMAN COMPUTER INTERFACE	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction : Importance of user Interface – definition, importance of 8 good design. Benefits of good design. A brief history of Screen design. The graphical user interface – popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user – Interface popularity, characteristics- Principles of user interface	08
П	Design process: Human interaction with computers, importance of 8 human characteristics human consideration, Human interaction speeds, understanding business junctions. III Screen Designing : Design goals – Scre	08
III	Screen Designing : Design goals – Screen planning and purpose, 8 organizing screen elements, ordering of screen data and content – screen navigation and flow – Visually pleasing composition – amount of information – focus and emphasis – presentation information simply and meaningfully – information retrieval on web – statistical graphics – Technological consideration in interface design.	08
IV	Windows : New and Navigation schemes selection of window, 8 selection of devices based and screen based controls. Components – text and messages, Icons and increases – Multimedia, colors, uses problems, choosing colors	08
V	Software tools : Specification methods, interface – Building Tools. 8 Interaction Devices – Keyboard and function keys – pointing devices – speech recognition digitization and generation – image and video displays – drivers.	08
Fext bo	oks:	1
l. Alan	Dix, Janet Finlay, Gregory Abowd, Russell Beale Human Computer Interaction, 3rd Edition Prentice H	Hall, 2004.
	han Lazar Jinjuan Heidi Feng, Harry Hochheiser, Research Methods in HumanComputer Interaction, W	•
	Shneiderman and Catherine Plaisant Designing the User Interface: Strategies for Effective Huma ion (5th Edition, pp. 672, ISBN 0- 321-53735-1, March 2009), Reading, MA: Addison-Wesley Publish	-

	CLOUD COMPUTING		
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
Ι	INTRODUCTION Introduction to Cloud Computing – Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity in Cloud – On-demand Provisioning.	08	
II	CLOUD ENABLING TECHNOLOGIES Service Oriented Architecture – REST and Systems of Systems – Web Services – Publish- Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization of CPU – Memory – I/O Devices –Virtualization Support and Disaster Recovery.	08	
III	CLOUD ARCHITECTURE, SERVICES AND STORAGELayered Cloud Architecture Design – NIST Cloud Computing Reference Architecture – Public,Private and Hybrid Clouds – laaS – PaaS – SaaS – Architectural Design Challenges – CloudStorage – Storage-as-a-Service – Advantages of Cloud Storage – Cloud Storage Providers – S3.	08	
IV	RESOURCE MANAGEMENT AND SECURITY IN CLOUD Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods –Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges –Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM –Security Standards.	08	
V	CLOUD TECHNOLOGIES AND ADVANCEMENTS Hadoop – MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine — Open Stack – Federation in the Cloud – Four Levels of Federation – Federated Services and Applications – Future of Federation.	08	
	books:		
	Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Proce	essing to the	
	nternet of Things", Morgan Kaufmann Publishers, 2012.		
	Rittinghouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and S	security,	
	CRC Press, 2017.		
	Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, —Mastering Cloud Computing, Tata Mcgraw H		
	Coby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing – A Practical Approach, Tata Mcgraw	⁷ H1ll, 2009.	
	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud:		
	Transactional Systems for EC2 and Beyond (Theory in Practice), O'Reilly, 2009.		

	BLOCKCHAIN ARCHITECTURE DESIGN	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Blockchain: Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,) Hashchain to Blockchain, Basic consensus mechanisms	08
п	Consensus: Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of Blockchain consensus protocols Permissioned Blockchains:Design goals, Consensus protocols for Permissioned Blockchains	08
III	Hyperledger Fabric (A): Decomposing the consensus process, Hyperledger fabric components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond Chaincode: fabric SDK and Front End (b) Hyperledger composer tool	08
IV	Use case 1 : Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply chain finance, invoice management discounting, etc	08
V	Use case 3 : Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain	08
Text bo		
1.	Mstering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos	
2.	Blockchain by Melanie Swa, O'Reilly	
3.	Hyperledger Fabric - https://www.hyperledger.org/projects/fabric	
4.	Zero to Blockchain - An IBM Redbooks course, by Bob Dill, David https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html	Smits -

	AGILE SOFTWARE DEVELOPMENT	• • •
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	AGILE METHODOLOGY Theories for Agile Management – Agile Software Development – Traditional Model vs. Agile Model – Classification of Agile Methods – Agile Manifesto and Principles – Agile Project Management – Agile Team Interactions – Ethics in Agile Teams – Agility in Design, Testing – Agile Documentations – Agile Drivers, Capabilities and Values	08
II	AGILE PROCESSES Lean Production – SCRUM, Crystal, Feature Driven Development- Adaptive Software Development – Extreme Programming: Method Overview – Lifecycle – Work Products, Roles and Practices.	08
ш	AGILITY AND KNOWLEDGE MANAGEMENTAgile Information Systems – Agile Decision Making – Earl_S Schools of KM – InstitutionalKnowledge Evolution Cycle – Development, Acquisition, Refinement, Distribution, Deployment ,Leveraging – KM in Software Engineering – Managing Software Knowledge – Challenges ofMigrating to Agile Methodologies – Agile Knowledge Sharing – Role of Story-Cards – Story-CardMaturity Model (SMM).	08
IV	AGILITY AND REQUIREMENTS ENGINEERING Impact of Agile Processes in RE–Current Agile Practices – Variance – Overview of RE Using Agile – Managing Unstable Requirements – Requirements Elicitation – Agile Requirements Abstraction Model – Requirements Management in Agile Environment, Agile Requirements Prioritization – Agile Requirements Modeling and Generation – Concurrency in Agile Requirements Generation.	08
V	AGILITY AND QUALITY ASSURANCE Agile Product Development – Agile Metrics – Feature Driven Development (FDD) – Financial and Production Metrics in FDD – Agile Approach to Quality Assurance – Test Driven Development – Agile Approach in Global Software Development.	08
Constra 2.Hazza 2009. 3.Craig 4.Kevir	boks: I J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering: Applying the ints for Business Results", Prentice Hall, 2003. A and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer Science Larman, "Agile and Iterative Development: A Managers Guide", Addison-Wesley, 2004. A C. Desouza, "Agile Information Systems: Conceptualization, Construction, and Management", H mann, 2007.	e", Springer

AUGMENTED & VIRTUAL REALITY		1
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	VIRTUAL REALITY AND VIRTUAL ENVIRONMENTS: The historical development of VR: Scientific landmarks Computer Graphics, Real-time computer graphics, Flight simulation, Virtual environments, Requirements for VR, benefits of Virtual reality.	08
	HARDWARE TECHNOLOGIES FOR 3D USER INTERFACES: Visual Displays Auditory Displays, Haptic Displays, Choosing Output Devices for 3D User Interfaces.	
Π	3D USER INTERFACE INPUT HARDWARE: Input device characteristics, Desktop input devices, Tracking Devices, 3D Mice, Special Purpose Input Devices, Direct Human Input, Home - Brewed Input Devices, Choosing Input Devices for 3D Interfaces.	08
ш	SOFTWARE TECHNOLOGIES: Database - World Space, World Coordinate, World Environment, Objects - Geometry, Position / Orientation, Hierarchy, Bounding Volume, Scripts and other attributes, VR Environment - VR Database, Tessellated Data, LODs, Cullers and Occluders, Lights and Cameras, Scripts, Interaction - Simple, Feedback, Graphical User Interface, Control Panel, 2D Controls, Hardware Controls, Room / Stage / Area Descriptions, World Authoring and Playback, VR toolkits, Available software in the market	08
IV	3D INTERACTION TECHNIQUES: 3D Manipulation tasks, Manipulation Techniques and Input Devices, Interaction Techniques for 3D Manipulation, Deign Guidelines - 3D Travel Tasks, Travel Techniques, Design Guidelines - Theoretical Foundations of Wayfinding, User Centered Wayfinding Support, Environment Centered Wayfinding Support, Evaluating Wayfinding Aids, Design Guidelines - System Control, Classification, Graphical Menus, Voice Commands, Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Case Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Techniques, Design Guidelines, Beyond Text and Number entry.	08
	 DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing and Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. 	
V	Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, marker-less tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems.	08
Fext bo	poks:	I
	B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Four re Design", Morgan Kaufmann, 2009.	indations o
2. Gera	rd Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.	
	g A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory ar	1.5

Addison Wesley, USA, 2005.

4. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.

5. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

6. John Vince, "Virtual Reality Systems", Addison Wesley, 1995.

7. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simon and Schuster, 1991.

8. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002

9. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

MACHINE LEARNING		
	DETAILED SYLLABUS	
Unit	Торіс	Proposed Lecture
I	INTRODUCTION – Well defined learning problems, Designing a Learning System, Issues in Machine Learning; THE CONCEPT LEARNING TASK - General-to-specific ordering of hypotheses, Find-S, List then eliminate algorithm, Candidate elimination algorithm, Inductive bias	08
п	DECISION TREE LEARNING - Decision tree learning algorithm-Inductive bias- Issues in Decision tree learning; ARTIFICIAL NEURAL NETWORKS – Perceptrons, Gradient descent and the Delta rule, Adaline, Multilayer networks, Derivation of backpropagation rule Backpropagation AlgorithmConvergence, Generalization;	08
III	 Evaluating Hypotheses: Estimating Hypotheses Accuracy, Basics of sampling Theory, Comparing Learning Algorithms; Bayesian Learning: Bayes theorem, Concept learning, Bayes Optimal Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm; 	08
IV	Computational Learning Theory: Sample Complexity for Finite Hypothesis spaces, Sample Complexity for Infinite Hypothesis spaces, The Mistake Bound Model of Learning; INSTANCE-BASED LEARNING – k-Nearest Neighbour Learning, Locally Weighted Regression, Radial basis function networks, Case-based learning	08
V	Genetic Algorithms: an illustrative example, Hypothesis space search, Genetic Programming, Models of Evolution and Learning; Learning first order rules-sequential covering algorithms-General to specific beam search-FOIL; REINFORCEMENT LEARNING - The Learning Task, Q Learning.	08
Text b	 Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013 Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag. 	3.

GAME PROGRAMMING		
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	3D GRAPHICS FOR GAME PROGRAMMING : 3D Transformations, Quaternions, 3D Modeling And Rendering, Ray Tracing, ShaderModels, Lighting, Color, Texturing, Camera And Projections, Culling And Clipping, CharacterAnimation, Physics-Based Simulation, Scene Graphs.	08
П	GAME ENGINE DESIGN: Game Engine Architecture, Engine Support Systems, Resources And File Systems, Game Loop And Real-Time Simulation, Human Interface Devices, Collision And Rigid Body Dynamics, Game Profiling.	08
III	GAME PROGRAMMING :Application Layer, Game Logic, Game Views, Managing Memory, Controlling The Main Loop,Loading And Caching Game Data, User Interface Management, Game Event Management.	08
IV	GAMING PLATFORMS AND FRAMEWORKS: 2D And 3D Game Development Using Flash, DirectX, Java, Python, Game Engines – DX Studio, Unity.	08
V	GAME DEVELOPMENT: Developing 2D And 3D Interactive Games Using DirectX Or Python – Isometric And Tile Based Games, Puzzle Games, Single Player Games, Multi Player Games.	08
Fext b	ooks:	L
1.	Mike Mc Shaffrfy And David Graham, "Game Coding Complete", Fourth Edition, Cengage Learning, 2012.	PTR,
2.	Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009.	
3.	David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach To Real-Time Con Graphics" 2nd Editions, Morgan Kaufmann, 2006.	nputer
4.	Ernest Adams And Andrew Rollings, "Fundamentals Of Game Design", 2nd Edition Prentice Hall / N 2009.	ew Riders,
5.	Eric Lengyel, "Mathematics For 3D Game Programming And Computer Graphics", 3rd Edition, Court Technology PTR, 2011.	se
6.	Jesse Schell, The Art Of Game Design: A Book Of Lenses, 1st Edition, CRC Press, 2008.	

DETAILED SYLLABUS		3-0-0
Unit	Торіс	Proposed Lecture
Ι	DIGITAL IMAGE FUNDAMENTALS: Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.	08
II	IMAGE ENHANCEMENT : Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering– Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.	08
III	IMAGE RESTORATION : Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering	08
IV	IMAGE SEGMENTATION: Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.	08
V	IMAGE COMPRESSION AND RECOGNITION: Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture – Patterns and Pattern classes – Recognition based on matching.	08
Text b		
1. 2.	Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing Pearson, Third Edition, 2010	
2. 3.	Anil K. Jain, Fundamentals of Digital Image Processing Pearson, 2002. Kenneth R. Castleman, Digital Image Processing Pearson, 2006.	
3. 4.	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, Digital Image Processing using MATLAB Pea Education, Inc., 2011.	rson
5.	D,E. Dudgeon and RM. Mersereau, Multidimensional Digital Signal Processing Prentice Hall Profession Technical Reference, 1990.	onal
6. 7.	William K. Pratt,Digital Image Processing John Wiley, New York, 2002 Milan Sonka et al Image processing, analysis and machine vision Brookes/Cole, Vikas Publishing Hot edition, 1999	use, 2nd

PARALLEL AND DISTRIBUTED COMPUTING

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	 Introduction: Scope, issues, applications and challenges of Parallel and Distributed Computing Parallel Programming Platforms: Implicit Parallelism: Trends in Microprocessor Architectures, Dichotomy of Parallel Computing Platforms, Physical Organization, Communication Costs in Parallel Machines, Routing Mechanisms for Interconnection Networks, GPU, co- processing. Principles of Parallel Algorithm Design: Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing. 	08
П	CUDA programming model: Overview of CUDA, Isolating data to be used by parallelized code, API function to allocate memory on parallel computing device, to transfer data, Concepts of Threads, Blocks, Grids, Developing a kernel function to be executed by individual threads, Execution of kernel function by parallel threads, transferring data back to host processor with API function.	08
Ш	Analytical Modeling of Parallel Programs: Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect of Granularity on Performance, Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-Optimal Execution Time	08
IV	Dense Matrix Algorithms: Matrix-Vector Multiplication, Matrix-Matrix Multiplication, Issues in Sorting on Parallel Computers, Bubble Sort and Variants, Quick Sort, Other Sorting Algorithms Graph Algorithms: Minimum Spanning Tree: Prim's Algorithm, Single-Source Shortest Paths: Dijkstra's Algorithm, All-Pairs Shortest Paths, Transitive Closure, Connected Components, Algorithms for Sparse Graph	08
V	Search Algorithms for Discrete Optimization Problems: Sequential Search Algorithms, Parallel Depth-First Search, Parallel Best-First Search, Speedup Anomalies in Parallel Search Algorithms	08
Text b	ooks:	
1. 2. 3.	A Grama, A Gupra, G Karypis, V Kumar. Introduction to Parallel Computing (2nd ed.). Addison Wes C Lin, L Snyder. Principles of Parallel Programming. USA: Addison-Wesley Publishing Company, 20 J Jeffers, J Reinders. Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kaufmann and Elsevier, 2013.	008.

SPEECH AND NATURAL LANGUAGE PROCESSING DETAILED SYLLABUS		3-0-0
Unit	Торіс	Proposed Lecture
I	 INTRODUCTION : Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance WORD LEVEL ANALYSIS Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models. 	08
II	SYNTACTIC ANALYSIS Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing – Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures.	08
III	SEMANTICS AND PRAGMATICS Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.	08
IV	BASIC CONCEPTS of Speech Processing :Speech Fundamentals: Articulatory Phonetics – Production And Classification Of Speech Sounds;Acoustic Phonetics – Acoustics Of Speech Production; Review Of Digital Signal ProcessingConcepts; Short-Time Fourier Transform, Filter-Bank And LPC Methods.	08
V Text bo	 SPEECH ANALYSIS: Features, Feature Extraction And Pattern Comparison Techniques: Speech Distortion Measures– Mathematical And Perceptual – Log–Spectral Distance, Cepstral Distances, Weighted Cepstral Distances And Filtering, Likelihood Distortions, Spectral Distortion Using A Warped Frequency Scale, LPC, PLP And MFCC Coefficients, Time Alignment And Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths. UNIT III : SPEECH MODELING : Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-Estimation, Implementation Issues. 	08

Processing, Computational Linguistics and Speech, Pearson Publication, 2014.

- 2. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, OReilly Media, 2009.
- 3. Lawrence Rabiner And Biing-Hwang Juang, "Fundamentals Of Speech Recognition", Pearson Education, 2003.
- 4. Daniel Jurafsky And James H Martin, "Speech And Language Processing An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition", Pearson Education, 2002.
- 5. Frederick Jelinek, "Statistical Methods Of Speech Recognition", MIT Press, 1997.
- 6. 1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 7. Richard M Reese, —Natural Language Processing with Java, OReilly Media, 2015.
- 8. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- 9. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

DETAILED SYLLABUS		3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION : Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates	08
П	DEEP NETWORKS : History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi- supervised Learning	08
III	DIMENTIONALITY REDUCTION 9 Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization	08
IV	OPTIMIZATION AND GENERALIZATION : Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience	08
V	CASE STUDY AND APPLICATIONS : Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-Bioinformatics- Face Recognition- Scene Understanding- Gathering Image Captions	08

2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.

4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

DATA COMPRESSION		
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Compression Techniques: Loss less compression, Lossy Compression, Measures of performance, Modeling and coding, Mathematical Preliminaries for Lossless compression: A brief introduction to information theory, Models: Physical models, Probability models, Markov models, composite source model, Coding: uniquely decodable codes, Prefix codes.	08
II	The Huffman coding algorithm: Minimum variance Huffman codes, Adaptive Huffman coding: Update procedure, Encoding procedure, Decoding procedure. Golomb codes, Rice codes, Tunstall codes, Applications of Hoffman coding: Loss less image compression, Text compression, Audio Compression.	08
ш	Coding a sequence, Generating a binary code, Comparison of Binary and Huffman coding, Applications: Bi-level image compression-The JBIG standard, JBIG2, Image compression. Dictionary Techniques: Introduction, Static Dictionary: Diagram Coding, Adaptive Dictionary. The LZ77 Approach, The LZ78 Approach, Applications: File Compression-UNIX compress, Image Compression: The Graphics Interchange Format (GIF), Compression over Modems: V.42 bits, Predictive Coding: Prediction with Partial match (ppm): The basic algorithm, The ESCAPE SYMBOL, length of context, The Exclusion Principle, The Burrows-Wheeler Transform: Moveto- front coding, CALIC, JPEG-LS, Multi-resolution Approaches, Facsimile Encoding, Dynamic Markoy Compression.	08
IV	Distortion criteria, Models, Scalar Ouantization: The Quantization problem, Uniform Quantizer, Adaptive Quantization, Non uniform Quantization.	08
V	Advantages of Vector Quantization over Scalar Quantization, The Linde-Buzo-Gray Algorithm, Tree structured Vector Quantizers. Structured VectorQuantizers.	08
Fext bo		•
2. Elem 3. Introd 4.Data (id Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers ents of Data Compression,Drozdek, Cengage Learning duction to Data Compression, Second Edition, Khalid Sayood,The Morgan aufmann Series Compression: The Complete Reference 4th Edition byDavid Salomon, Springer Compression1st Edition by Timothy C. Bell Prentice Hall	

QUANTUM COMPUTING		1
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	08
II	Quantum Computation : Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database.	08
ш	Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance	08
IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information.	08
V	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error –Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy, Von Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource .	08
Press, F 2. Elea: Compu 3 Oct 2 4. Con	boks: heal A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", Cambridg Fint South Asian edition, 2002. nor G. Rieffel, Wolfgang H. Polak, "Quantum Computing - A Gentle Introduction" (Scientific and tation) Paperback – Import, 014 3. Computing since Democritus by Scott Aaronson nputer Science: An Introduction by N. DavidMermin 5. Yanofsky's and Mannucci, Quantum Co ter Scientists.	Engineer